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Motivation

Let X ⊆ Rd be a Borel set, e ∈ Sd−1. Let Pe : Rd → R,
Pe(x) = e · x be the orthogonal projection map.

Question
What is the relation between the size of Pe(X) and the size of
X?

Pe is Lipschitz, therefore dimH Pe(X) ⩽ min{dimH X, 1}

Theorem (Marstrand’s projection theorem)
For any Borel set X ⊆ Rd and almost all directions e ∈ Sd−1,
dimH Pe(X) = min{dimH X, 1}.

We want to study for u ∈ [0,min{dimH X, 1}],

dimH{e ∈ Sd−1 : dimH Pe(X) < u}.
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A few bounds

Set X ⊆ R2, dimH X ⩽ 1 and let u ∈ [0, dimH X].
The first bound by Kaufman ’68:

dimH{e ∈ S1 : dimH Pe(X) < u} ⩽ u,

which is sharp when u = dimH X.

Bourgain ‘10 and Oberlin ‘12 proved that

dimH{e ∈ S1 : dimH Pe(X) < dimH X/2} = 0.

dimH X/2 dimH X
0

dimH X

u

min{0, 2u − dimH X}
Conjectured by Oberlin
Proved by Ren–Wang ‘23
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The Fourier dimension

Given X ⊆ Rd, recall

dimH X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

|µ̂(z)|2|z|s−d dz < ∞
}
;

dimF X = sup
{

s ∈ [0, d] : ∃µ finite on X with sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞
}
.

We always have dimF X ⩽ dimH X.

P̂e#µ(r) =
∫
R

e−2πirPe(x) dµ(x) =
∫
R

e−2πi

(

re

)

·x dµ(x) = µ̂(re).

Then dimF Pe(X) ⩾ min{1, dimF X} for all e ∈ Sd−1. So if
dimH X ⩽ 1,

dimF X ⩽ dimF Pe(X) ⩽ dimH Pe(X) ⩽ dimH X,

and if dimF X = dimH X there are no exceptions. Thus, if
u ⩽ dimF X,

{e ∈ S1 : dimH Pe(X) < u} = ∅.
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Recall Ren–Wang’s bound,

dimH{e ∈ S1 : dimH Pe(X) < u} ⩽ max{0, 2u − dimH X}.

Example (dimF X gives discontinuous bounds)
Fix s ∈ (0, 1] and t ∈ (s/2, s). Let A be the set from the
previous example and B with dimF B = dimH B = t. Then

· dimF(A ∪ B) = t; dimH(A ∪ B) = s.
· If u ⩾ t, dimH{e ∈ S1 : dimH Pe(A ∪ B) ⩽ u} ⩾ 2t − s.

ts/2 s
0

2t − s

s
Dimension of the exceptional set of A ∪ B

u

Question
What conditions on Fourier decay give better bounds for the
dimension of the exceptional set?
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Remark
The Fourier dimension alone is not sufficient to improve the
bounds

Question
What conditions on Fourier decay give better bounds for the
dimension of the exceptional set?
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The Fourier spectrum

Given X ⊆ Rd and θ ∈ (0, 1]

dimθ
F X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

∣∣µ̂(z)∣∣ 2
θ |z|

s
θ
−d dz < ∞

}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:

· dim0
F X = dimF X and dim1

F X = dimH X.
· For each θ ∈ [0, 1], dimF X ⩽ dimθ

F X ⩽ dimH X.
· θ 7→ dimθ

F X is continuous and non-decreasing.
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}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:

· dim0
F X = dimF X and dim1

F X = dimH X.
· For each θ ∈ [0, 1], dimF X ⩽ dimθ

F X ⩽ dimH X.
· θ 7→ dimθ

F X is continuous and non-decreasing.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews



The Fourier spectrum

Given X ⊆ Rd and θ ∈ (0, 1]

dimθ
F X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

∣∣µ̂(z)∣∣ 2
θ |z|

s
θ
−d dz < ∞

}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:

· dim0
F X = dimF X and dim1

F X = dimH X.

· For each θ ∈ [0, 1], dimF X ⩽ dimθ
F X ⩽ dimH X.

· θ 7→ dimθ
F X is continuous and non-decreasing.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews



The Fourier spectrum

Given X ⊆ Rd and θ ∈ (0, 1]

dimθ
F X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

∣∣µ̂(z)∣∣ 2
θ |z|

s
θ
−d dz < ∞

}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:

· dim0
F X = dimF X and dim1

F X = dimH X.
· For each θ ∈ [0, 1], dimF X ⩽ dimθ

F X ⩽ dimH X.

· θ 7→ dimθ
F X is continuous and non-decreasing.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews



The Fourier spectrum

Given X ⊆ Rd and θ ∈ (0, 1]

dimθ
F X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

∣∣µ̂(z)∣∣ 2
θ |z|

s
θ
−d dz < ∞

}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:

· dim0
F X = dimF X and dim1

F X = dimH X.
· For each θ ∈ [0, 1], dimF X ⩽ dimθ

F X ⩽ dimH X.
· θ 7→ dimθ

F X is continuous and non-decreasing.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews



The Fourier spectrum

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews



The Fourier spectrum

Given X ⊆ Rd and θ ∈ (0, 1]

dimθ
F X = sup

{
s ∈ [0, d] : ∃µ finite on X with

∫
Rd

∣∣µ̂(z)∣∣ 2
θ |z|

s
θ
−d dz < ∞

}
.

θ = 0 −→ sup
z∈Rd

∣∣µ̂(z)∣∣2|z|s < ∞

Some facts about the Fourier spectrum:
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F X = dimF X and dim1
F X = dimH X.

· For each θ ∈ [0, 1], dimF X ⩽ dimθ
F X ⩽ dimH X.

· θ 7→ dimθ
F X is continuous and non-decreasing.

· For almost all e ∈ Sd−1, dimθ
F Pe(X) ⩾ min{1, dimθ

F X}.
· For all e ∈ Sd−1, dimθ

F Pe(X) ⩾ min{1, dimθ
F X − (d − 1)θ}.

Theorem (Fraser–dO, 2024+)
Let X ⊂ Rd be a Borel set. If u ⩽ supθ∈[0,1](dim

θ
F X − (d − 1)θ),

then
{e ∈ Sd−1 : dimH Pe(X) < u} = ∅.
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Exceptional set estimates

Let X ⊆ Rd, for u ∈ [0,min{dimH X, 1}],

dimH{e ∈ Sd−1 : dimH Pe(X) < u}

⩽


2u − dimH X , if d = 2, (Ren–Wang ’23);
d − 2 + u , if dimH X ⩽ 1, (Mattila ’15);
d − 1 − dimH X + u , if dimH X ⩾ 1, (Peres–Schlag ’00).

Theorem (Fraser–dO, 2024+)
Let X ⊆ Rd be a Borel set. Then for all u ∈ [0, 1],

dimH{e ∈ Sd−1 : dimHPe(X) < u}

⩽ max

{
0, d − 1 + inf

θ∈(0,1]

u − dimθ
F X

θ

}
.
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Better estimates - R2

Given X ⊆ R2, for what θ ∈ [0, 1] is 1 +
u−dimθ

F X
θ < 2u − dimH X?

1
2

1
0

dimH X
2

dimH X

1

θ

1
2

1
0

dimH X
2

1

1+dimH X
2

dimH X

θ

We can improve Ren-Wang’s bounds if dimθ
F X intersects the

shaded region.
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Better estimates - Higher dimensions

Given X ⊆ Rd, for what θ ∈ [0, 1] is d − 1 +
u−dimθ

F X
θ < d − 2 + u

or d − 1 +
u−dimθ

F X
θ < d − 1 − dimH X + u?

1
0

u

1

dimH X

θ
1

0

u

1

dimH X

θ

We can improve Mattila’s or Peres–Schlag’s bounds if dimθ
F X

intersects the shaded region.
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An example on R3

Let Eα, Eβ and Eγ be three middle (1 − 2α), (1 − 2β) and
(1 − 2γ) Cantor sets, respectively. Define X = Eα × Eβ × Eγ .

α = 1/5, β = 1/10, γ = 1/15

dimH X
0

1

2

u

Peres–Schlag
Mattila

Fraser–dO (θ = 1/2)

α = 1/3, β = 1/4, γ = 1/5

1
0

1

2

u

Peres–Schlag
Mattila

Fraser–dO (θ = 1/2)
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Exceptional set estimates

What more information does

dimH{e ∈ Sd−1 : dimHPe(X) < u}

⩽ max

{
0, d − 1 + inf

θ∈(0,1]

u − dimθ
F X

θ

}
give?
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Example (dimF X gives discontinuous bounds)
Fix s ∈ (0, 1] and t ∈ (s/2, s). Let A be the set from the
previous example and B with dimF B = dimH B = t. Then

· dimF(A ∪ B) = t; dimH(A ∪ B) = s.
· If u ⩾ t, dimH{e ∈ S1 : dimH Pe(A ∪ B) ⩽ u} ⩾ 2t − s.

ts/2 s
0

2t − s

s
Dimension of the exceptional set of A ∪ B

u

Question
Under what conditions do we get continuity for the bound of
the dimension of the exceptional set at u = dimF X?
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Exceptional set estimates

dimH{e ∈ Sd−1 : dimHPe(X) < u}

⩽ max

{
0, d − 1 + inf

θ∈(0,1]

u − dimθ
F X

θ

}
.

We ask for continuity of the bound at u = dimF X, let ε ∈ (0, 1),

dimH{e ∈ Sd−1 : dimHPe(X) < dimF X + ε2}

⩽ d − 1 + ε− dimε
F X − dimF X

ε
.

lim infε→0
dimε

F X−dimF X
ε is the lower right semi-derivative of

dimθ
F X at θ = 0.

Theorem (Fraser–dO, 2024+)
Let X be a Borel set in Rd. If ∂+ dimθ

F X|θ=0 ⩾ d − 1, then the
function u 7→ dimH{e ∈ Sd−1 : dimH Pe(X) < u} is continuous
at u = dimF X.
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Example (dimF X gives discontinuous bounds)
Fix s ∈ (0, 1] and t ∈ (s/2, s). Let A be the set from the
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Theorem (Fraser–dO, 2024+)
Let X be a Borel set in Rd. If ∂+ dimθ

F X|θ=0 ⩾ d − 1, then the
function u 7→ dimH{e ∈ Sd−1 : dimH Pe(X) < u} is continuous
at u = dimF X.

1
0

dimF X

dimH X
dθ + dimF X

(dimH X − dimF X)θ + dimF X

θ
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Theorem (Fraser–dO, 2024+)
Let X be a Borel set in Rd. If ∂+ dimθ

F X|θ=0 ⩾ d − 1, then the
function u 7→ dimH{e ∈ Sd−1 : dimH Pe(X) < u} is continuous
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1
0

dimF X

dimH X
dθ + dimF X

(d − 1)θ + dimF X

(dimH X − dimF X)θ + dimF X

θ

Question
Is ∂+ dimθ

F X|θ=0 > 0 sufficient? Or perhaps ∂+ dimθ
F X|θ=0 ⩾ ρ

for some ρ > 0?
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Thank you!
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