FOURIER ANALYTIC METHODS FOR ORTHOGONAL PROJECTIONS

Ana Emilia de Orellana.

aedo1@st-andrews.ac.uk

University of St Andrews Joint work with Jonathan Fraser

Shenzhen Technology University - Fractal talk

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Question

What is the relation between the size of $P_e(X)$ *and the size of X?*

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Question

What is the relation between the size of $P_e(X)$ and the size of *X?*

 P_e is Lipschitz, therefore $\dim_\text{H} P_e(X) \leqslant \min\{\dim_\text{H} X, 1\}$

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Question

What is the relation between the size of $P_e(X)$ and the size of *X?*

 P_e is Lipschitz, therefore $\dim_\text{H} P_e(X) \leqslant \min\{\dim_\text{H} X, 1\}$

Theorem (Marstrand's projection theorem)

 F or any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\text{H}} P_e(X) = \min{\{\dim_{\text{H}} X, 1\}}.$

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Question

What is the relation between the size of $P_e(X)$ and the size of *X?*

 P_e is Lipschitz, therefore $\dim_\text{H} P_e(X) \leqslant \min\{\dim_\text{H} X, 1\}$

Theorem (Marstrand's projection theorem)

 F or any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\text{H}} P_e(X) = \min{\{\dim_{\text{H}} X, 1\}}.$

Almost all means that

$$
\mathcal{L}^{d-1}(\{e \in S^{d-1} : \dim_{H} P_e(X) < \min\{\dim_{H} X, 1\}\}) = 0.
$$

Let $X \subseteq \mathbb{R}^d$ be a Borel set, $e \in S^{d-1}$. Let $P_e : \mathbb{R}^d \to \mathbb{R}$, $P_e(x) = e \cdot x$ be the orthogonal projection map.

Question

What is the relation between the size of $P_e(X)$ and the size of *X?*

 P_e is Lipschitz, therefore $\dim_\text{H} P_e(X) \leqslant \min\{\dim_\text{H} X, 1\}$

Theorem (Marstrand's projection theorem)

 F or any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\text{H}} P_e(X) = \min{\{\dim_{\text{H}} X, 1\}}.$

We want to study for $u \in [0, \min\{\dim_H X, 1\}],$

dim_H</sub>{*e* $\in S^{d-1}$: dim_H</sub> $P_e(X) < u$ }*.*

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$. The first bound by Kaufman '68:

 $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$

which is sharp when $u = \dim_H X$.

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$. The first bound by Kaufman '68:

 $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

 $\dim_{\text{H}}\{e \in S^1 : \dim_{\text{H}} P_e(X) < \dim_{\text{H}} X/2\} = 0.$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$. The first bound by Kaufman '68:

 $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

$$
\dim_{\mathbb{H}}\{e \in S^1 : \dim_{\mathbb{H}} P_e(X) < \dim_{\mathbb{H}} X/2\} = 0.
$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$. The first bound by Kaufman '68:

 $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

$$
\dim_{\mathbb{H}}\{e \in S^1 : \dim_{\mathbb{H}} P_e(X) < \dim_{\mathbb{H}} X/2\} = 0.
$$

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\}
$$

 \mathcal{L} ;

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_H X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$. We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$.

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$
\n
$$
\dim_{\mathbb{F}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty \right\}.
$$

We always have $\dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.

$$
\widehat{P}_{e\#}\widehat{\mu}(r)
$$

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i r e \cdot x} d\mu(x)
$$

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i(re)\cdot x} d\mu(x)
$$

d

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.

 -11

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i(re)\cdot x} d\mu(x) = \widehat{\mu}(re).
$$

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall
\n
$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i (re) \cdot x} d\mu(x) = \widehat{\mu}(re).
$$

Then $\dim_{\mathrm{F}} P_e(X) \geqslant \min\{1, \dim_{\mathrm{F}} X\}$ for all $e \in S^{d-1}$.

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall

$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i (re) \cdot x} d\mu(x) = \widehat{\mu}(re).
$$

Then $\dim_{\text{F}} P_e(X) \geqslant \min\{1, \dim_{\text{F}} X\}$ for all $e \in S^{d-1}$. So if dim_H $X \leq 1$,

 $\dim_{\text{F}} X \leq \dim_{\text{F}} P_e(X) \leq \dim_{\text{H}} P_e(X) \leq \dim_{\text{H}} X$,

Given
$$
X \subseteq \mathbb{R}^d
$$
, recall

$$
\dim_{\mathbb{H}} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} dz < \infty \right\};
$$

 $\dim_{\text{F}} X = \sup \big\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i (re) \cdot x} d\mu(x) = \widehat{\mu}(re).
$$

Then $\dim_{\text{F}} P_e(X) \geqslant \min\{1, \dim_{\text{F}} X\}$ for all $e \in S^{d-1}$. So if $\dim_H X \leqslant 1$,

 $\dim_{\text{F}} X \leq \dim_{\text{F}} P_e(X) \leq \dim_{\text{H}} P_e(X) \leq \dim_{\text{H}} X$,

and if $\dim_{\text{F}} X = \dim_{\text{H}} X$ there are no exceptions.

Given $X \subseteq \mathbb{R}^d$, recall

 $\dim_{\text{F}} X = \sup \{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \sup$ *^z∈*R*^d* $|\widehat{\mu}(z)|^2 |z|^s < \infty$.

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$.

$$
\widehat{P_{e\#}\mu}(r) = \int_{\mathbb{R}} e^{-2\pi i r P_e(x)} d\mu(x) = \int_{\mathbb{R}} e^{-2\pi i(re)\cdot x} d\mu(x) = \widehat{\mu}(re).
$$

Then $\dim_{\text{F}} P_e(X) \geqslant \min\{1, \dim_{\text{F}} X\}$ for all $e \in S^{d-1}$. So if $\dim_{\mathbb{H}} X \leqslant 1$,

dim_F $X \leq \dim_F P_e(X) \leq \dim_H P_e(X) \leq \dim_H X$,

and if $\dim_{\mathrm{F}} X = \dim_{\mathrm{H}} X$ there are no exceptions. Thus, if $u \leqslant \dim_{\text{F}} X$,

$$
\{e \in S^1 : \dim_{\mathbb{H}} P_e(X) < u\} = \varnothing.
$$

Can we use the Fourier dimension to improve these bounds?

Recall Ren–Wang's bound,

 $\dim_{\text{H}} \{e \in S^1 : \dim_{\text{H}} P_e(X) < u\} \leq \max\{0, 2u - \dim_{\text{H}} X\}.$

Recall Ren–Wang's bound,

 $\dim_{\text{H}} \{e \in S^1 : \dim_{\text{H}} P_e(X) < u\} \leq \max\{0, 2u - \dim_{\text{H}} X\}.$

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2, s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\text{H}} A = s$ such that $\dim_{\text{H}} \{e \in S^1 : \dim_{\text{H}} P_e(X) \leqslant t\} = 2t - s$.

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2, s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\text{H}} A = s$ such that $\dim_{\text{H}} \{e \in S^1 : \dim_{\text{H}} P_e(X) \leqslant t\} = 2t - s$.

Example (dim_F X gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{H} B = t$ *. Then*

- \cdot dim_F($A \cup B$) = t _i, dim_H($A \cup B$) = *s*.
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2, s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\text{H}} A = s$ such that $\dim_{\text{H}} \{e \in S^1 : \dim_{\text{H}} P_e(X) \leqslant t\} = 2t - s$.

Example (dim_F X gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{H} B = t$ *. Then*

- \cdot dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Example $(\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{\text{H}} B = t$ *. Then*

- *•* dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Remark

The Fourier dimension alone is not sufficient to improve the bounds

Example $(\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{\text{H}} B = t$ *. Then*

- \cdot dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Question

What conditions on Fourier decay give better bounds for the dimension of the exceptional set?

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$
\dim^{\theta}_\mathcal{F} X=\sup\bigg\{s\in[0,d]: \exists\mu\text{ finite on }X\text{ with }\int_{\mathbb{R}^d}\big|\widehat{\mu}(z)\big|^{\frac{2}{\theta}}|z|^{\frac{s}{\theta}-d}\,dz<\infty\bigg\}.
$$

Given
$$
X \subseteq \mathbb{R}^d
$$
 and $\theta \in (0, 1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

Given
$$
X \subseteq \mathbb{R}^d
$$
 and $\theta \in (0, 1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \bigg\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \bigg\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \bigg\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \bigg\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

Some facts about the Fourier spectrum:

 \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.

Given
$$
X \subseteq \mathbb{R}^d
$$
 and $\theta \in (0, 1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.

Given
$$
X \subseteq \mathbb{R}^d
$$
 and $\theta \in (0, 1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.
- \cdot $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.
- \cdot $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.
- \cdot $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- *•* For almost all $e \in S^{d-1}$, $\dim_{\mathbb{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathbb{F}}^{\theta} X\}.$

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$
\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} dz < \infty \right\}.
$$

$$
\theta = 0 \quad \longrightarrow \quad \sup_{z \in \mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^s < \infty
$$

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.
- \cdot $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- *•* For almost all $e \in S^{d-1}$, $\dim_{\mathbb{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathbb{F}}^{\theta} X\}.$
- *•* For all $e \in S^{d-1}$, $\dim_{\mathbb{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathbb{F}}^{\theta} X (d-1)\theta\}.$

Some facts about the Fourier spectrum:

- \cdot dim_F *X* = dim_F *X* and dim_F *X* = dim_H *X*.
- *·* For each $\theta \in [0, 1]$, $\dim_{\text{F}} X \leqslant \dim_{\text{F}} X \leqslant \dim_{\text{H}} X$.
- \cdot $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- *•* For almost all $e \in S^{d-1}$, $\dim_{\mathbb{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathbb{F}}^{\theta} X\}.$
- *•* For all $e \in S^{d-1}$, $\dim_{\mathbb{F}}^{\theta} P_e(X) \geqslant \min\{1, \dim_{\mathbb{F}}^{\theta} X (d-1)\theta\}.$

Theorem (Fraser–dO, 2024+)

 \mathcal{L} *Let* $X \subset \mathbb{R}^d$ *be a Borel set. If* $u \leqslant \sup_{\theta \in [0,1]} (\dim_F^{\theta} X - (d-1)\theta)$ *, then*

$$
\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\} = \varnothing.
$$

Let $X \subseteq \mathbb{R}^d$, for $u \in [0, \min\{\dim_H X, 1\}]$, *d−*1

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\}
$$
\n
$$
\leq \begin{cases}\n2u - \dim_{\mathbb{H}} X, & \text{if } d = 2, \\
d - 2 + u, & \text{if } \dim_{\mathbb{H}} X \leq 1, \\
d - 1 - \dim_{\mathbb{H}} X + u, & \text{if } \dim_{\mathbb{H}} X \geq 1, \\
\end{cases}\n\quad \text{(Nattila '15)};
$$

Let $X \subseteq \mathbb{R}^d$, for $u \in [0, \min\{\dim_H X, 1\}]$,

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\}
$$
\n
$$
\leq \begin{cases}\n2u - \dim_{\mathbb{H}} X, & \text{if } d = 2, \\
d - 2 + u, & \text{if } \dim_{\mathbb{H}} X \leq 1, \\
d - 1 - \dim_{\mathbb{H}} X + u, & \text{if } \dim_{\mathbb{H}} X \geq 1, \\
\end{cases}\n\quad \text{(Nattila '15)};
$$

Theorem (Fraser–dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ *be a Borel set. Then for all* $u \in [0,1]$ *,*

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < u\}
$$
\n
$$
\leqslant \max\left\{0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}.
$$

Let $X \subseteq \mathbb{R}^d$, for $u \in [0, \min\{\dim_H X, 1\}]$,

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\}
$$
\n
$$
\leq \begin{cases}\n2u - \dim_{\mathbb{H}} X, & \text{if } d = 2, \\
d - 2 + u, & \text{if } \dim_{\mathbb{H}} X \leq 1, \\
d - 1 - \dim_{\mathbb{H}} X + u, & \text{if } \dim_{\mathbb{H}} X \geq 1, \\
\end{cases}\n\quad \text{(Nattila '15)};
$$

Theorem (Fraser–dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ *be a Borel set. Then for all* $u \in [0,1]$ *,*

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < u\}
$$
\n
$$
\leqslant \max\left\{0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}.
$$

Better estimates - \mathbb{R}^2

Given $X \subseteq \mathbb{R}^2$, for what $\theta \in [0,1]$ is $1 + \frac{u - \dim_F^{\theta} X}{\theta} < 2u - \dim_H X$?

Better estimates - \mathbb{R}^2

We can improve Ren-Wang's bounds if dim*^θ* ^F *X* intersects the shaded region.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews

Better estimates - Higher dimensions

Given $X \subseteq \mathbb{R}^d$, for what $\theta \in [0,1]$ is $d-1+\frac{u-\dim^{\theta}_\mathbb{F} X}{\theta} < d-2+u$ or $d-1+\frac{u-\dim_{\mathbb{F}}^{\theta}X}{\theta} < d-1-\dim_{\mathbb{H}}X+u$?

Better estimates - Higher dimensions

We can improve Mattila's or Peres–Schlag's bounds if dim*^θ* ^F *X* intersects the shaded region.

Ana E. de Orellana Fourier analytic methods for orthogonal projections University of St Andrews

An example on \mathbb{R}^3

Let E_α *,* E_β and E_γ be three middle $(1 - 2\alpha)$ *,* $(1 - 2\beta)$ and $(1 - 2\gamma)$ Cantor sets, respectively. Define $X = E_{\alpha} \times E_{\beta} \times E_{\gamma}$.

What more information does

$$
\dim_{\mathbb{H}}\left\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\right\}
$$
\n
$$
\leqslant \max\left\{0, d - 1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}
$$

give?

Example $(\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{\text{H}} B = t$ *. Then*

- *•* dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Example $(\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the previous example and B with* dim_F $B = \dim_{\text{H}} B = t$ *. Then*

- \cdot dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Question

Under what conditions do we get continuity for the bound of the dimension of the exceptional set at $u = \dim_F X$?

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < u\}
$$
\n
$$
\leqslant \max\left\{0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}.
$$

$$
\dim_{\mathbb{H}} \{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \}
$$
\n
$$
\leqslant \max \left\{ 0, d - 1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta} \right\}.
$$
\nAs also for continuity of the bound at u , then X let $0 \leqslant (0,1)$.

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < \dim_{\mathbb{F}}X + \varepsilon^2\}
$$

$$
\leqslant d - 1 + \inf_{\theta \in (0,1]} \frac{\dim_{\mathrm{F}} X + \varepsilon^2 - \dim_{\mathrm{F}}^{\theta} X}{\theta}
$$

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u\}
$$
\n
$$
\leqslant \max\left\{0, d - 1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}.
$$

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$
\dim_{\mathrm{H}}\{e \in S^{d-1} : \dim_{\mathrm{H}} P_e(X) < \dim_{\mathrm{F}} X + \varepsilon^2\}
$$

$$
\leq d - 1 + \inf_{\theta \in (0,1]} \frac{\dim_{\mathrm{F}} X + \varepsilon^2 - \dim_{\mathrm{F}}^{\theta} X}{\theta}
$$

$$
\leq d - 1 + \varepsilon - \frac{\dim_{\mathrm{F}}^{\varepsilon} X - \dim_{\mathrm{F}} X}{\varepsilon}.
$$

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < u\}
$$
\n
$$
\leq \max\left\{0, d - 1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathbb{F}}^{\theta} X}{\theta}\right\}
$$

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < \dim_{\mathbb{F}}X + \varepsilon^2\}
$$
\n
$$
\leq d - 1 + \varepsilon - \frac{\dim_{\mathbb{F}}^{\varepsilon}X - \dim_{\mathbb{F}}X}{\varepsilon}.
$$

 $\liminf_{\varepsilon\to 0}\frac{\dim_\mathbb{F}^{\varepsilon}X-\dim_\mathbb{F}X}{\varepsilon}$ is the lower right semi-derivative of $\dim_{\mathrm{F}}^{\theta} X$ at $\theta = 0$.

.

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$
\dim_{\mathbb{H}}\{e \in S^{d-1} : \dim_{\mathbb{H}}P_e(X) < \dim_{\mathbb{F}} X + \varepsilon^2\}
$$
\n
$$
\leq d - 1 + \varepsilon - \frac{\dim_{\mathbb{F}}^{\varepsilon} X - \dim_{\mathbb{F}} X}{\varepsilon}.
$$

 $\liminf_{\varepsilon\to 0}\frac{\dim_\mathbb{F}^{\varepsilon}X-\dim_\mathbb{F}X}{\varepsilon}$ is the lower right semi-derivative of $\dim_{\mathrm{F}}^{\theta} X$ at $\theta = 0$.

Theorem (Fraser–dO, 2024+)

 L et X be a Borel set in \mathbb{R}^d . If $\underline{\partial_+}\dim_\mathrm{F}^{\theta} X|_{\theta=0}\geqslant d-1$, then the f unction $u \mapsto \dim_{\mathbb{H}} \{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \}$ is continuous $at u = \dim_{\mathrm{F}} X.$

Example (dim^F *X* gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the* '*pointwise sharp' example and B with* $\dim_{\text{F}} B = \dim_{\text{H}} B = t$ *. Then*

- \cdot dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*
- *· If* $u \ge t$, dim_H</sub>{ $e \in S^1$: dim_H</sub> $P_e(A \cup B) \le u$ } ≥ 2*t* − *s.*

Example (dim_F X gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the* '*pointwise sharp' example and B with* $\dim_{\text{F}} B = \dim_{\text{H}} B = t$ *. Then*

• dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*

• If
$$
u \geq t
$$
, $\dim_H \{e \in S^1 : \dim_H P_e(A \cup B) \leq u\} \geq 2t - s$.

Example (dim_F X gives discontinuous bounds)

Fix $s \in (0,1]$ *and* $t \in (s/2, s)$ *. Let A be the set from the* '*pointwise sharp' example and B with* $\dim_{\text{F}} B = \dim_{\text{H}} B = t$ *. Then*

• dim_F($A \cup B$) = *t*_{*i*}</sub> dim_H($A \cup B$) = *s.*

• If
$$
u \geq t
$$
, $\dim_{H} \{e \in S^{1} : \dim_{H} P_{e}(A \cup B) \leq u\} \geq 2t - s$.

Theorem (Fraser–dO, 2024+)

 L et X be a Borel set in \mathbb{R}^d . If $\partial_+ \dim_{\mathbb{F}}^{\theta} X\rvert_{\theta=0} \geqslant d-1$, then the f unction $u \mapsto \dim_{\mathbb{H}} \{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \}$ is continuous $at u = \dim_{\mathrm{F}} X$ *.*

Theorem (Fraser–dO, 2024+)

 L et X be a Borel set in \mathbb{R}^d . If $\partial_+ \dim_{\mathbb{F}}^{\theta} X\rvert_{\theta=0} \geqslant d-1$, then the f unction $u \mapsto \dim_{\mathbb{H}} \{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \}$ is continuous $at u = \dim_{\mathrm{F}} X$ *.*

Theorem (Fraser–dO, 2024+)

 L et X be a Borel set in \mathbb{R}^d . If $\partial_+ \dim_{\mathbb{F}}^{\theta} X\rvert_{\theta=0} \geqslant d-1$, then the f unction $u \mapsto \dim_{\mathbb{H}} \{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \}$ is continuous *at* $u = \dim_{\mathrm{F}} X$ *.*

Question

 $\frac{\partial^2 f}{\partial t^2} \dim^{\theta} X|_{\theta=0} > 0$ sufficient? Or perhaps $\frac{\partial^2 f}{\partial t^2} \dim^{\theta} X|_{\theta=0} \geqslant \rho$ *for some* $\rho > 0$?

Thank you!