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Most of this material is based on [Gut17], [Gut22], and [ZK19]. Every sentence in this note
should be taken with a pinch of salt, the objective here is not to be mathematically precise, please
refer to the references for the correct statements.

1. Fourier analysis

Given a function f ∈ L1(Rd), its Fourier transform is

f̂(ξ) =

∫
e−2πiξ·xf(x) dx.

This definition can be extended to functions f ∈ Lp(Rd) by using the density of the Schwartz
class (for p = 2) and by considering the functions f as tempered distributions (for any other
value of p ⩾ 1). The inverse Fourier transform of f is

f̂(x) =

∫
e2πiξ·xf(ξ) dξ,

or equivalently, f̂(x) = f̂(−x).
Fourier transforms behave nicely under linear transforms and differential operators, for that

reason they usually appear in connection to differential equations, as we shall see later.
The following are some properties of Fourier transforms that will be useful to us. These need

to be interpreted accordingly depending on where the function f lies. E.g. if f is in one of
S (Rd), L1(Rd) or L2(Rd), everything is well-defined as stated, but if f ∈ Lp(Rd), then some of
these identities should be interpreted as true in the distributional sense.

· Inversion formula:

̂̂
f = f =

̂̂
f ;

· Parseval’s formula:
∫
f(x)g(x) dx =

∫
f̂(ξ)ĥ(ξ) dξ;

· Plancherel’s identity: ∥f∥L2(Rd) = ∥f̂∥L2(Rd) = ∥f̂∥L2(Rd);
· Hausdorff–Young inequality: ∥f̂∥Lp′ (Rd) ⩽ ∥f∥Lp(Rd), where p and p′ are conjugate expo-

nents.
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2. Decoupling

One of the most basic questions that we can ask in Fourier analysis is: What information
can we get about f given information about f̂ ? Decoupling is one variant of this question,
where “information about f̂ ” refers to the geometry of the set where f̂ is supported, and the
information that we want about f will be estimating ∥f∥Lp(Rd).

By the Fourier inversion formula we can write f as

f(x) =

∫
Rd

e2πiξ·xf̂(ξ) dξ.

Suppose spt f̂ ⊆ Ω for some Ω ⊆ Rd, and that we can write Ω as the disjoint union Ω =
⋃
θ.

Then

f(x) =

∫
Rd

e2πiξ·xf̂(ξ) dξ

=

∫
Rd

∑
θ

e2πiξ·xf̂ |θ(ξ) dξ

=
∑
θ

∫
θ
e2πiξ·xf̂(ξ) dξ

=
∑
θ

fθ,

where fθ :=
∫
θ e

2πiξ·xf̂(ξ) dξ is such that spt f̂θ ⊆ θ. So we are writing f as a sum of functions
that depend on the support of f̂ .

Definition 2.1. Let Ω ⊂ Rd be the disjoint union Ω =
⋃
θ. For each p ∈ [1,∞], the decoupling

constant Dp(Ω =
⋃

θ) is the smallest constant such that for every f with spt f̂ ⊆ Ω,

∥f∥2Lp(Rd) ⩽ Dp(Ω =
⋃
θ)2

∑
θ

∥fθ∥2Lp(Rd).

Note that the decoupling constant depends both on Ω and its decomposition
⋃
θ, as well as in

the value of p.
There are some values of p that give trivial bounds for Dp(Ω =

⋃
θ).

p = 2: In this case the fact that θ are disjoint makes things trivial by orthogonality and the
Pythagoras theorem,

∥f∥2L2(Rd) =
∑
θ

∫
Rd

|fθ(x)|2 dx =
∑
θ

∥fθ∥2L2(Rd).

Thus the decoupling constant is 1, and in this case it does not depend on the decomposition
Ω =

⋃
θ.

p = ∞: In this case we get a trivial upper bound for the decoupling constant.

∥f∥L∞(Rd) = sup |f(x)| = sup
∣∣∑

θ

fθ(x)
∣∣ ⩽ ∑

θ

sup ∥fθ∥L∞(Rd),

by Cauchy–Schwartz,

∥f∥L∞(Rd) ⩽
(∑

θ

1
)1/2(∑

θ

∥fθ∥2L∞(Rd)

)1/2
= (#θ)1/2

(∑
θ

∥fθ∥2L∞(Rd)

)1/2
.

Then D∞(Ω =
⋃
θ) ⩽ #θ, which clearly depends on the decomposition on Ω.
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3. Decoupling for the parabola and the Kakeya problem

The parabola is an interesting object to study in frequency space for many reasons, one of them
being that if a function is a solution to the Schrödinger equation1, then its Fourier transform is
supported in a parabola2. Let P = {(t, t2) : −1 ⩽ t ⩽ 1} be the truncated parabola. Let δ > 0 be
a small scale, Ω be the δ-neighbourhood of P , we will decompose Ω as the union of approximately
rectangles θ of size δ1/2 × δ.

Theorem 3.1. For every ε > 0 and each 2 ⩽ p ⩽ 6, Dp(Ω =
⋃
θ) ≲ δ−ε.

It was mentioned in Section 1 that the Fourier transform behaves nicely under linear transfor-
mations. Due to this, if we transform the vertical rectangles θ defined before by rectangles that
are ‘tangent’ to the parabola, the decoupling constant will not change. So we will consider these
other rectangles (or parallelepipeds) instead, that are still of size roughly δ−1/2 × δ.

The proof of the decoupling theorem for the parabola uses the following tools
· Orthogonality: We saw that the functions fθ are orthogonal on R2. They will be ‘approx-

imately orthogonal’ on any sufficiently large set.
· Induction on scales: The definition of the decoupling constant was conveniently chosen

so that it could combine information from different scales. In the case of the parabola,
if we have two decompositions of Ω into rectangles at scales δ1 and δ2 respectively, then
Dp(δ1δ2) ⩽ Dp(δ1)Dp(δ2), where Dp(δ) refers to the decoupling constant for the decom-
position into rectangles at scale δ. This allows us to consider, on each step, finer coverings
of the parabola which will make the decoupling constant smaller.

Fix a scale δ, take a rectangle θ of size δ1/2 × δ in the decomposition of Ω. Since spt f̂θ ⊂ θ,
then the uncertainty principle says that3 fθ will be approximately constant on the dual rectangle
θ∗ centred at ωθ and of size δ−1/2 × δ−1. Let Tθ be a tiling of the plane by translations of θ∗

(note that we changed the notation from rectangles to tubes because θ∗s are long and thin), we
can write the wavepacket decomposition of fθ,

fθ(x) ≈
∑
T∈Tθ

aT e
2πiωθ·xχT ,

where χT is the characteristic function on T and aT is some constant that depends on the tube
T .

We have the same for each rectangle θ in the decomposition of Ω. By the curvature of the
parabola, the rectangles θ will have different orientations, and so will their duals θ∗. This reduces
the decoupling problem for the parabola to studying the overlaps of wavepackets with varying
orientations, and thus, to study how much overlap there is between the long and thin tubes
T ∈ Tθ for different values of θ. The Kakeya conjecture asks precisely this question.

Conjecture 3.2. For each θ in the covering of P , let Tθ be a translate of θ∗. Then for each
ε > 0, ∣∣∣⋃

θ

Tθ

∣∣∣ ≳ δε
∑
θ

|Tθ|.

1The Schrödinger equation is ∂tf = i∆f .
2Other surfaces are also interesting for similar reasons, such as the sphere for Laplace eigenfunction equation

∆f = λf , and the cone for the wave equation ∂2
t f = ∆f . In fact, decoupling was introduced by Wolff when

studying local smoothing on the cone, a problem related to the solutions of the wave equation.
3Intuitively: If we know the frequency in concentrated in time then we don’t have much certainty on the position

of our particle, so the possible positions of the particle will be spread in space.
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