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Most of this material is based on [Dem20, BCT06, BCCT08, BCCT10]. Please refer to the
references for more precise statements.

1. The Brascamp–Lieb inequality

The Brascamp–Lieb inequality was first introduced in [BL76] in an attempt by the authors
to prove a sharp version of Young’s inequality for convolutions. This inequality soon became an
interesting object of study in the wider mathematical community, seeing applications in convex
geometry, stochastic processes, and group theory, to name a few. In its most general form, the
inequality first appeared in [Lie90] and states that∫

Rn

m∏
j=1

fj(Ljx) dx ⩽ BL(L,p)
m∏
j=1

∥fj∥Lpj (Rnj ) (1.1)

where for each j = 1, . . . ,m, Lj : Rn → Rnj is a surjective linear map, pj ∈ [1,∞], and the
Brascamp–Lieb constant BL(L,p) is the smallest constant such that the inequality holds for all
non-negative f ∈ Lpj (Rnj ). The Brascamp–Lieb inequality quantifies how much the linear maps
Lj can concentrate, and hence why it played a fundamental role in obtaining multilinear Kakeya
and multilinear Fourier extension estimates.

This inequality is a powerful generalisation of several basic inequalities in analysis (see Sec-
tion 2). Including Hölder’s inequality, Young’s inequality for convolutions, and the Loomis–
Whitney inequality. All of which are obtained after making a convenient choice of Brascamp–Lieb
datum, as we shall refer to the pair (L,p) = ((Lj)

m
j=1, (pj)

m
j=1).

Of course, (1.1) is only meaningful as long as the Brascamp–Lieb constant is finite, and it was
only in [BCCT10, BCCT08] that the conditions that guarantee this were found. In fact, these
conditions are not only sufficient, but also necessary.
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Theorem 1.1. The Brascamp–Lieb constant BL(L,p) is finite if and only if

n =
m∑
j=1

nj

pj
(1.2)

and

dim(V ) ⩽
m∑
j=1

dim(LjV )

pj
(1.3)

for all subspaces V of Rn.

Condition (1.2) states that the integrand on the left-hand side of (1.1) is essentially an n-
dimensional object. Condition (1.3) measures how much of a given vector space V , the map Lj

‘can see’. If the inequality was reversed then it would mean that the maps Lj are compressing
V too much, or that V is close to being ker(Lj), and so we would be able to build functions fj
concentrated on those subspaces that would break the Brascamp–Lieb inequality.

The work of Lieb in [Lie90] illustrated the important role that Gaussians play in these types of
inequalities. He proved that to obtain the sharp value of the Brascamp–Lieb constant it suffices
to test the inequality with centred Gaussians, reducing the problem to a finite dimensional one.

2. Obtaining other fundamental inequalities

As mentioned previously, the Brascamp–Lieb inequality generalises several fundamental in-
equalties in analysis. In each of the following examples we use (1.2) and (1.3) to give the condition
that guarantees the finiteness of the Brascamp–Lieb constant. Note, however, that finding that
the value of such constant is equal to 1 is a much more laborious task, and comes from the fact
that equality holds in all three inequalities when testing with appropriate Gaussians.

2.1. Hölder’s inequality. For each j = 1, . . . ,m let nj = n, Lj = Id. With these definitions
the Brascamp–Lieb inequality becomes∫

Rn

m∏
j=1

fj(x) dx ⩽ BL(Id,p)
m∏
j=1

∥fj∥Lpj (Rn).

Conditions (1.2) and (1.3) hold trivially if the exponents pj satisfy
m∑
j=1

1

pj
= 1

which gives rise to Hölder’s inequality after proving that BL(Id) = 1.

2.2. Young’s inequality for convolutions. Young’s inequality states that for 1
p + 1

q = 1 + 1
r ,

∥f ∗ g∥Lr(Rn) ⩽ ∥f∥Lp(Rn)∥g∥Lq(Rn). (2.1)
We will start by proving an equivalent representation of (2.1). For any r ∈ [1,∞] it holds that∣∣∣ ∫

Rn

h(x)p(x) dx
∣∣∣ ⩽ M∥h∥Lr′ (Rn) if and only if ∥p∥Lr(Rn) ⩽ M, (2.2)

where r′ is the conjugate exponent of r.
Suppose we had that for 1

p + 1
q +

1
r′ = 2,∫

Rn

∫
Rn

h(x)f(x− y)g(y) dy dx ⩽ ∥h∥Lr′ (Rn)∥f∥Lp(Rn)∥g∥Lq(Rn). (2.3)
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Since ∫
Rn

∫
Rn

h(x)f(x− y)g(y) dy dx =

∫
Rn

h(x)(f ∗ g)(x) dx,

letting M = ∥f∥Lp(Rn)∥g∥Lq(Rn) and p = f ∗ g, (2.2) yields that

∥f ∗ g∥Lr(Rn) ⩽ ∥f∥Lp(Rn)∥g∥Lq(Rn).

The other direction is proved in the same way. With this, it suffices to prove (2.3), which we will
using the Brascamp–Lieb inequality.

Let n1 = n2 = n3 = n, let p, q, r′ ∈ [1,∞], and define the transformations Lj : Rn × Rn → Rn

by
L1(x, y) = x, L2(x, y) = x− y, L3(x, y) = y.

Then the Brascamp–Lieb inequality reads∫
R2n

h(x)f(x− y)g(y) dx dy ⩽ BL(L,p)∥f∥Lp(Rn)∥g∥Lq(Rn)∥h∥Lr′ (Rn)

and BL(L,p) is finite (and equal to 1) if and only if

2 =
1

p
+

1

q
+

1

r′
, (2.4)

thus proving (2.3). Note that (2.4) together with 1
r + 1

r′ = 1 gives 1
p + 1

q = 1 + 1
r , which is the

condition for the classic version of Young’s inequality for convolutions.

2.3. Loomis–Whitney inequality. Let (ej)
n
j=1 be the standard basis of Rn. For each j =

1, . . . , n let nj = n − 1, and Pj : Rn → e⊥j be the orthogonal projection onto the complement of
ej . The Brascamp–Lieb inequality asserts that∫

Rn

n∏
j=1

fj(x1, . . . , x̂j , . . . , xn) dx ⩽ BL(P ,n − 1)
n∏

j=1

∥fj∥Ln−1(Rn−1), (2.5)

where x̂j denotes omission. The Brascamp–Lieb constant is finite (and in fact, equal to 1) since

n =
n∑

j=1

n− 1

n− 1
,

and

dim(V ) ⩽
n∑

j=1

dim(Pj(V ))

n− 1
,

which follows easy from the rank-nullity theorem by checking several cases for the subspaces V .
Choosing for each j = 1, . . . , n, fj = χPj(A) for some set A ⊂ Rn gives a particularly interesting

application of the Loomis–Whitney inequality,

|A| ⩽ |P1(A)|
1

n−1 |P2(A)|
1

n−1 · · · |Pn(A)|
1

n−1 .
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3. Multilinear Kakeya and the Loomis–Whitney inequality

As we saw in Section 2.3, the Loomis–Whitney inequality is obtained from the Brascamp–Lieb
inequality by making a specific choice of Brascamp–Lieb datum. Renaming the functions fj in
(2.5) by f

1
n−1

j we obtain the following alternative version of the Loomis–Whitney inequality1

∫
Rn

n∏
j=1

fj(x1, . . . , x̂j , . . . , xn)
1

n−1 dx ⩽
n∏

j=1

(∫
Rn−1

fj

) 1
n−1

.

For each j = 1, . . . , n, let Tj be a family of infinitely long tubes of radius 1 all pointing in the
xj direction, and define fj =

∑
T∈Tj

χT . Then the Loomis–Whitney inequality for such functions
reads ∫

Rd

n∏
j=1

( n∑
j=1

χT

) 1
n−1

dx ⩽
n∏

j=1

|Tj |
1

n−1 . (3.1)

Thus, the Loomis–Whitney inequality allows us to obtain good control on the overlapping of
families of parallel tubes pointing in transversal directions.

Now let us modify the family of tubes slightly. For each j = 1, . . . , n, let Tj be a family of
infinitely long tubes of radius 1 pointing in directions belonging to some sufficiently small fixed
neighbourhood of the xj direction. The multilinear Kakeya estimate states that for n

n−1 ⩽ q ⩽ ∞
the following inequality holds.∫

Rd

n∏
j=1

( ∑
T∈Tj

χT

) q
n

dx ≲
n∏

j=1

|Tj |
q
n . (3.2)

It is easy to see common ground here between (3.1) and (3.2) at the endpoint q = n
n−1 . What

is more, some sharp examples for the multilinear extension estimate also work for (3.1), which
would indicate that these two estimates are equivalent. This is, of course, not the case: there are
other examples for the multilinear Fourier extension estimate that do not work for (3.1), and in
those examples the wavepackets of the functions fj are supported on tubes pointing on directions
that vary slightly; Just like in the tubes that form the families Tj in the multilinear Kakeya
estimate. This is essentially the difference between (3.1) and (3.2), and the motivation behind
the breakthrough paper [BCT06].
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